
Business Process Monitoring on Blockchains:
Potentials and Challenges

Claudio Di Ciccio1, Giovanni Meroni2, and Pierluigi Plebani2

1 Sapienza University of Rome, Rome, Italy
diciccio@di.uniroma1.it

2 Politecnico di Milano, Milan, Italy
{giovanni.meroni, pierluigi.plebani}@polimi.it

Abstract. The ability to enable a tamper-proof distribution of immutable data
has boosted the studies around the adoption of blockchains also in Business
Process Management. In this direction, current research work primarily focuses on
blockchain-based business process design, or on execution engines able to enact
processes through smart contracts. Although very relevant, less studies have been
devoted so far on how the adoption of blockchains can be beneficial to business
process monitoring. This work goes into this direction by providing an insightful
analysis to understand the benefits as well as the hurdles of blockchain-enabled
business process monitoring. In particular, this work considers the adoption of
programmable blockchain platforms to manage the generation, distribution, and
analysis of business process monitoring data.

Keywords: Blockchain · Business Process Monitoring · Business Process Man-
agement.

1 Introduction

Blockchains are gaining momentum in Business Process Management (BPM) research
as the infrastructural platform of choice on which collaborative, multi-party business
processes are conducted [12]. Thanks to their guarantee of persistence and immutability
of the recorded transactions, not only can they operate as a solid backbone for the storage
of data and actions, but they are also promising aids for the monitoring of processes that
run atop [16].

Research towards the adoption of blockchains for the monitoring of processes is,
however, still at its early stages. Thus far, most of the attempts have focused on the
generation of readily usable data for the application of existing process mining techniques
[8,14,5] and the creation of networks highlighting the most common patterns of exchange
of information and assets among peers [6,16,7]. A comprehensive analysis of the aspects
of blockchains that may favour or encumber the monitoring of processes is, to the best
of our knowledge, still missing.

The goal of this paper is to clarify to what extent a blockchain can be beneficial
for business process monitoring. On this basis, the paper identifies a set of research
challenges that are worth to be addressed by the research community for the design and
realization of blockchain-based process monitoring platforms.

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



2 C. Di Ciccio, G. Meroni, P. Plebani

M
an

u
fa

ct
ur

e
r

M
an

u
fa

ct
ur

e
r

Sh
ip

p
er

Sh
ip

p
er

C
us

to
m

er
C

us
to

m
er

Manufacturer portion 
started

Fill in 
container

Truck reached
manufacturer

Container attached
to truck

Shipper portion 
ended

Manufacturer portion 
ended

Attach 
container to 

truck

Shipper portion 
started

Drive to 
manufacturer

Truck reached 
manufacturer

Container attached 
to truck

Truck reached 
Inland terminal

Container 
delivered

Detach 
container 
from truck

Container 
delivered

Truck reached 
customer

Terminal portion 
ended

Ship 
container

Container
[open,detached]

Container
[closed,detached]

Container
[open,attached]

Truck
[carrier,moving]

Truck
[manufacturer,still]

Truck
[manufacturer,moving]

Truck
[customer,still]

Inspect 
container

Container
[closed,attached]

Customer portion 
started

24h Notify delay

Fig. 1: Motivating example.

The remainder of this paper is as follows. Section 2 describes the fundamental
elements of process monitoring. Section 3 describes the concepts on which blockchain
platforms are based and illustrates the main research conducted so far for the process-
oriented analysis of blockchain data. Section 4 examines the challenges and opportunities
we envision for a blockchain-based process monitoring architecture. Finally, Section 5
concludes the paper.

2 Business process monitoring

Business process monitoring aims at identifying how well running processes are perform-
ing with respect to performance measures and objectives. Depending on the available
tools and data, a business process platform can report on the running processes, from
the sole tracking of the running instances to the checking of deviations with respect to
the expected behaviour and the identification of other anomalies. This section briefly
introduces the main characteristics of business process monitoring platforms in terms of
the possible objectives of the monitoring (i.e., the why), the available techniques (i.e.,
the how), and the subject of monitoring (i.e., the what).

To better explain these aspects, we use an example taken from the logistics domain.
Figure 1 shows the Business Process Model and Notation (BPMN) model of a shipment
process in particular. The example involves a manufacturer, M , who receives an order
from one of its customers, C, and a shipper, S, on whom M relies for the delivery of the
goods to C. At first, M starts filling a shipping container with the goods requested by C.

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



Business Process Monitoring on Blockchains: Potentials and Challenges 3

Meanwhile, S starts driving one of its trucks to M ’s production facility. Once the truck
arrives, M firstly attaches the container to the truck, then inspects the container to verify
if all the goods requested by C are present. Such an inspection should be performed only
at this stage, and the container should not be opened again until it reaches the premises
of C. Once the inspection completes, S ships the container to C, which detaches it from
the truck. In case the shipping activity takes longer that 24 hours, S must justify the
delay.

Why to monitor. There are several reasons why a monitoring platform should be
introduced. As a general need, the process owner and the recipients are interested in
verifying and demonstrating that the process is behaving correctly. A monitoring platform
can be a passive element that merely records the performed actions, or it can actively
contribute to handle the occurring deviations.

Moreover, the objectives of a business process monitoring platform can be various:
to determine if activities take longer than expected to complete, if there are bottlenecks
in the process, if resources are under- or over-utilized, and if there are violations in the
process execution, among other things. Depending on the needs of the process owner, all
– or a subset – of these aspects can be considered.

How to monitor. According to the classification proposed by [1] and [17], process
monitoring techniques can be classified in five main groups: event data logging, Busi-
ness Activity Monitoring, runtime performance analysis, conformance checking, and
compliance checking.

Event data logging is the generation of sequences of events related to a specific process
instance being executed. Events can provide notifications on the activities being executed,
or on the artifacts (i.e., the physical or virtual objects manipulated by the process) and the
resources (i.e., the human operators or software components responsible for executing
activities) participating in the process. Once collected, events are typically stored in
so-called event logs. Since several other monitoring techniques require event data to
work, this technique is often seen as a prerequisite for them.

Business Activity Monitoring (BAM) and runtime performance analysis: Also known as
“monitoring” [1], BAM analyzes real-time information on the activities being executed
(e.g., response time and failure rate). With this technique it is possible to measure Key
Performance Indicators (KPIs) relevant for the process, thus determining how well activ-
ities are performed. Given event data, BAM produces measurements for KPIs. Instead,
runtime performance analysis focuses on the data analysis of performance information
on the processes being executed to identify bottlenecks or resource allocation problems.
Unlike BAM, which focuses on single activities, Runtime performance analysis focuses
on process runs, thus accounting for dependencies among activities. Given a process
model and event data, runtime performance analysis produces performance-related
diagnostic information.

By resorting on BAM and runtime performance analysis, it is possible to measure
KPIs and identify other issues not directly related to the process structure. For instance,

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



4 C. Di Ciccio, G. Meroni, P. Plebani

it is possible to determine if activity Attach container to truck is causing a bottleneck, or
if Drive to manufacturer consumes too many resources (e.g., if M is located in a poorly
connected area). Based on the agreements between organizations, these techniques may
be confined only to activities belonging to each organization, or they may be applied to
all the activities.

Conformance checking consists in the techniques that compare the modeled process
behavior with the one evidenced by execution data. To this end, the gathered event
data are replayed on the process model, so as to detect deviations from the expected
behaviour. Given a process model and event data, Conformance checking produces
conformance-related diagnostic information.

With conformance checking, the stakeholders can verify if the execution is in line
with the process description. In particular, the nature of the model plays an important role
in defining the degrees of freedom that are left to the process executors. A collaboration
diagram (e.g., the complete collaboration diagram in Fig. 1) will force the whole process
to strictly adhere to the specifications. A process diagram (e.g., only the portion of
the process inside a specific pool) will force the process portion belonging to that
stakeholder to adhere to the specifications. Finally, a choreography diagram will force
only the interactions among stakeholders to adhere to the specifications, leaving the
stakeholders free to alter their internal processes.

Compliance checking encompasses the techniques aimed at verifying that constraints
representing regulations, guidelines, policies and laws, are fulfilled by the process. It
differs from conformance checking because constraints focus on process rules, rather
than on entire process runs.

Through compliance checking techniques, it is possible to define complex constraints
on the process that predicate both on the structure and on non functional aspects. Instead
of relying on a process model, compliance checking relies on compliance rules that
describe only the elements of the process that are useful to assess the constraint. For
instance, it is possible to monitor if the container is delivered to C within two days since
when M finished preparing it. Likewise, it is possible to monitor if less than 1% of the
shipments were carried out without inspecting the container. To this aim, according to
[10], several compliance checking techniques and languages exist. Since constraints
predicate on specific portions of the process, rather than on the process as a whole, it
is much easier for stakeholders to agree on monitoring them. In fact, only activities
required for the assessment of such constraints have to be disclosed, thus overcoming
one of the issues of conformance checking.

What to monitor. Depending on the monitoring technique and on the underlying
representation of the process to monitor, different kinds of events have to be logged
for the monitoring to be reliable. Conformance checking techniques typically require
events notifying the start or termination of activities, or the transmission and receipt
of messages among participants. BAM, runtime performance analysis and compliance
checking techniques usually require more complex events, also indicating when artifacts
were manipulated or who performed a task (e.g., starting an activity or modifying an
artifact).

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



Business Process Monitoring on Blockchains: Potentials and Challenges 5

Typically, if the reference model adopted for process monitoring is a process diagram,
only events belonging to the owner of the process are collected and analyzed. When the
process consists only of either automated activities or form-based ones, obtaining events
is a relatively easy task. In fact, event logs can be retrieved from the Business Process
Management System (BPMS) in charge of executing the process. Also, since users are
required to interact with the BPMS to perform business activities, event logs contain
accurate information on who performed which task, when the task was performed,
and which artifacts were involved during its execution. However, when the process
also involves manual activities, that is, activities that are performed by users without
interacting with the BPMS (e.g., shipping the container), collecting reliable event logs
becomes challenging. In fact, users may forget to notify to the BPMS when they perform
activities, they may incorrectly indicate in the notifications when the activities were
performed, they may indicate that they performed an activity which was not done or
which was done by another user. These issues can be partially solved with Internet of
Things (IoT)-based solutions, such as artifact-driven monitoring [13] or Unicorn [2],
which autonomously collect events from the artifacts being manipulated, to be then
analyzed to infer which activity was executed.

If the process to monitor is represented as a collaboration diagram, events belonging
to all the involved organizations have to be logged and shared among participants. This
is a challenging task both from the organizational and technical standpoint. However,
from an organizational viewpoint, the participants may be reluctant to share events on
the activities being performed, as it may allow competitors to uncover their operations.
In case of BAM and runtime performance analysis, sharing such events may even violate
privacy regulations, such as the General Data Protection Regulation (GDPR), since infor-
mation on the employees performing activities may be shared to the other organizations.
Technical-wise, sharing events typically requires either individual information systems
to be federated, or a centralized cross-organizational information system to be deployed
and adopted by all the participants. To partially overcome these issues, organizations can
autonomously monitor their own portions, and then share aggregated monitoring data to
the other participants. However, this approach reintroduces the problem of trust between
organizations, moving it from the execution to the monitoring of the processes. In fact,
for this approach to hold, organizations are required to trust each other, assuming that
monitoring data reflect the actual behavior of the process.

In case the process is represented as a choreography diagram, events related to the
transmission and reception of messages between organizations have to be logged. From
the technical standpoint, as long as the message exchanges are performed digitally (e.g.,
email, web service invocations), it is relatively easy to log and distribute events. In
fact, it is sufficient to passively monitor the communication channels, generating events
whenever communication activity is detected. On the other hand, if physical objects
are exchanged, generating event logs is a more complex task. In fact, an active agent is
required to observe the real world and produce an event whenever some physical object
is either received or sent. Originally, this was done by relying on human operators, but it
suffered from the same limitations as the ones outlined for manual activities. Therefore,
IoT-based solutions to track physical objects are adopted as long as the contents of the

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



6 C. Di Ciccio, G. Meroni, P. Plebani

messages are kept confidential, and only events relevant for the process being monitored
are disclosed.

Finally, in case compliance rules have to be monitored, depending on the language
and technique adopted, events related to messages, activities, or artifacts have to be
logged. Consequently, compliance checking has the same technical limitations as all the
conformance checking techniques. However, not every event related to the process has
to be logged, but only the ones required for verifying the compliance rules. Therefore,
monitoring has a much lower footprint on the organizations. Also, since organizations can
selectively choose which events to be logged and made available to the other participants,
they can agree on not to share information that discloses their know-how.

3 Monitoring with the blockchain: State of the art

In this section, we summarize the fundamental notions on which blockchain platforms
are based and the research conducted thus far that aims at analysing blockchain data for
process execution and analysis.

3.1 Elements of blockchains

A blockchain is a protocol for the decentralized storage of a tamper-proof sequence
of transactions, maintained and verified by the nodes participating in the network. A
ledger is an append-only list of data units named transactions. Every transaction records
a transfer of value (digital assets, cryptocurrencies, information bits, etc.) between two
accounts. The sender cryptographically signs the transaction to provide evidence that it is
not counterfeit. Blockchains such as Bitcoin [15] and Ethereum [21] collate transactions
into so-called blocks. Blocks are thus used as the messages to be broadcast to every
node. The order among blocks (and, a fortiori, the transactions therein) is kept by a
hash-based backward linking: every block keeps the digest of a hashing function applied
to the previous block. All together, the links generate a chain-like structure: hence the
name blockchain. Locally to a node, transactions are subject to a total ordering relation:
the evolution of the state of the parties’ accounts depend on the sequence of operations
recorded in the ledger. Blocks are, in fact, a measure of time as their addition to the
chain determines the passage to the next global system state. To pay back the effort of
nodes, an economic incentive is proposed that distributes so-called cryptocurrencies to
the nodes that publish the accepted blocks. Nodes participating in the network guarantee
that transactions and blocks are valid and thus prevent the data structure to be tampered
with. Also, the replication of the ledger makes it possible to have the stored information
always available locally to every node. However, the ledger may differ from node
to node: the nodes reach eventual consensus on the correct sequence in the ledger.
Temporary divergences between the local images of the ledger are called forks. The way
in which access and right to write are granted, determine two main categorisations of
the blockchain platform in use: private blockchains are accessible only to a restricted
number of peers, as opposed to the public ones; if a selected number of participants only
is allowed to decide on the next blocks, the blockchain is permissioned, otherwise it
is permissionless. Natively, Bitcoin and Ethereum are natively public permissionless

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



Business Process Monitoring on Blockchains: Potentials and Challenges 7

blockchain, although for the latter private networks can be created that operate within
conortia, allowing only a subset of nodes to mine blocks. Hyperledger Fabric,3 instead,
is conceived as a consortium (private) permissioned blockchain.

Second-generation blockchains such as Ethereum and Hyperledger Fabric support
the so-called smart contracts [18], that is, executable code expressing how business is to
be conducted among contracting parties (e.g., transfer digital assets after a condition is
fulfilled). In this paper, we will focus on this kind of blockchains operating as distributed
programmable platforms. Smart contracts often require data from the world outside the
blockchain sphere (e.g., financial data, weather-related information, random numbers,
sensors from hardware devices). However, they cannot directly invoke external APIs.
Therefore, smart contracts need software adaptors that play that interfacing role. Those
artefacts are named oracles [22]. Oracles can be further classified as software or hardware
oracles. Software oracles aim to extract information from programmed applications (e.g.,
web services), whereas hardware oracles extract data from the physical world (e.g., IoT
devices).

3.2 Current approaches

To date, preliminary attempts have been proposed that can be the basis to be built upon
for process monitoring in the blockchain. Smart contracts allow for the codification
of business process logic on the blockchain, as shown in the seminal work of Weber
et al. [20]. Later, a similar approach has been applied within the Caterpillar [9] and
Lorikeet [19] tools, as well as by Madsen et al. [11]. As several modern Business Process
Management Systems (BPMSs) do, those approaches adopt a Model-Driven Engineering
(MDE) paradigm to let the process analysts provide graphical representations of the
process and turn it into executable code enacting it [4].

From the monitoring perspective, the efforts have been mostly devoted to event data
logging thus far: the main rationale is to extract and process the payload of transactions
to turn them into event logs that are readily available for process mining tools. The
ordering of events is based upon the ordering of the transactions in the ledger, whereas
the attributes of the event (activity name, timestamp, resource, and the like) are identified
based on the signature of the invoked function on the smart contract [14], a user-defined
descriptor (manifest) [8], or the change of the smart contract’s attribute value [5].
Thereupon, process mining techniques (including conformance checking) are held to
analyse the generated event logs.

Other approaches have been applied to analyse blockchain-mediated communications
among peers, such as GraphSense [7]. Filtz et al. [6] studied the graph of addresses in
Bitcoin and thereby examined the transaction behavior of users, taking into consideration
exchange rates between virtual and fiat currencies. Prybila et al. [16] focus in particular
on the transposition of handovers of tasks in a process to Bitcoin transactions. With
their software prototype, they are thus able to verify the execution flow of a process by
tracking the transactions exchanged among peers.

The research conducted thus far constitutes a clear advancement towards future
architectures for business processes monitoring that are based on the blockchain. In the

3 https://www.hyperledger.org/projects/fabric

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3

https://www.hyperledger.org/projects/fabric


8 C. Di Ciccio, G. Meroni, P. Plebani

Legend

Public 
monitoring

data

BPMS Monitoring System

Blockchain clientPrivate 
monitoring

data

Process
status

Smart 
contract

Artifacts
status

Smart 
contract

Other party’s BPMS 
Monitoring System

Blockchain client

blockchain

Oracle

Grey Module within the blockchain

White Module outside the blockchain

Fig. 2: Blockchain-enhanced BPMS monitoring reference architecture

following section, we discuss challenges and opportunities that come along with their
design and adoption.

4 Monitoring with Blockchain: challenges and opportunities

Due to its properties, a blockchain can be adopted as a distributed infrastructure on
top of which a new type of business process monitoring platforms can be built. These
platforms can exploit the properties of data immutability, trust among the parties, and
data distribution offered by design by blockchains. Owing to their programmability, we
focus in particular on second-generation blockchains in the remainder of this paper.

To properly describe the potentials of introducing blockchains to this end, Fig. 2
shows a reference architecture that couples the typical BPMS monitoring subsystem
with a blockchain. Without focusing on one of the specific monitoring approaches
discussed in Section 2, we can generalize the input of the monitoring platform with the
status of the process instances and the ongoing activities (process status), and of the
artifacts managed thereby (artifact status). Depending on the adopted technique, the
logic implemented by the monitoring platform transforms this information about the
status. The produced output, generally referred as monitoring data, can be a collection of
event logs, or a transformation of the obtained input data into aggregated information that
is more meaningful to the analysis (e.g., at a higher level of abstraction than low-level
events). A portion of this output can be kept private (private monitoring data) or made
public (public monitoring data), to let other interested parties to check, for instance, the
compliance of the process.

When enriching the monitoring platform with a blockchain, the monitoring logic may
be encoded in one or more smart contracts. First of all, this requires that the monitoring
system includes a blockchain client which enables the communication with the rest of
the blockchain infrastructure. Secondly, as the output of a smart contract is published
as a transaction payload on the blockchain, the resulting monitoring data produced by

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



Business Process Monitoring on Blockchains: Potentials and Challenges 9

Table 1: Challenges in monitoring with the blockchain
Aspect Challenge Perspective

Design rationale Lack of capability Trust management

Smart Contracts
Monitoring transparency X X
Observability X
Lack of reactivity X X

Oracles
Time management X X
Reliabiity X X
Flexibility X X

Data management
Data quality X X
Data size X
Side effects X

the smart contract is automatically available to anyone allowed to access the blockchain.
This implies that the monitoring logic implemented as smart contract must be limited to
the part producing public monitoring data. On the one hand, this opportunity increases
the transparency of the monitoring and the possibility for external actors to evaluate the
behaviour of the process, as the smart contract is immutable and executed on all the
nodes in the blockchain network. On the other hand, since the publication of data on
the blockchain has an impact in terms of cost and performance, it becomes of utmost
importance to establish which monitoring data can be included in the blockchain (i.e.,
on-chain thus trusted by definition), and which one can be left off-chain as typical public
monitoring data (i.e., only under the control of the party producing them).

The distinction between data on- and off-chain is relevant not only when considering
the output of the monitoring platform, but also concerning the input of a smart contract
as they can natively operate only on data published on the blockchain. To overcome
this limitation, blockchains offer oracles to extend the smart contract accessibility to
off-chain data. For this reason, it is required that any dataset to which a smart contract
requires access for its computation, needs to be coupled with an oracle. Since coupling
a dataset with an oracle means making those data visible to all the members of the
blockchain, this implies that the data set should be properly partitioned into public (i.e.,
accessible through the oracle) and private parts.

In light of the above discussion, we observe that, to improve the business process
monitoring via blockchain, a thorough blueprint is required in terms of the smart contracts
(reflecting the monitoring capabilities), the oracles (identifying the data sources), and
the monitoring data (balancing between on-chain and off-chain data). Table 1 illustrates
the research challenges related to those three aspects and categorizes them according to
three main perspectives: the need for a thorough design rationale behind the realisation
of the monitoring infrastructure; the necessity to tackle the lack of capabilities that
the infrastructural usage of the blockchain brings; the demand for a policy of trust
management with information and actors. Each of the following subsections discusses
in further detail those aspects and the related challenges, emphasizing the perspectives
from which the issues are analyzed.

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



10 C. Di Ciccio, G. Meroni, P. Plebani

4.1 Challenges about smart contracts

Monitoring transparency. To improve the transparency of compliance checking, espe-
cially in case of multi-party business processes, a smart contract holds a crucial role.
In fact, based on the information that can be made accessible through oracles and the
relevant transactions mined in the blockchain, a smart contract can analyse the current
status of the process enactment and verify if the control flow – in the case of orchestrated
processes – or the message exchange – in the case of a choreographed process – are
behaving as expected. As the code composing the smart contract is immutably stored
on the blockchain, and it is executed on all the blockchain clients to reach consensus,
it is extremely hard for a single party to alter it in order to counterfeit the result. As a
consequence, when a single party is involved in the business process, being the smart
contract published on the blockchain, the logic that drives compliance becomes publicly
available to all the parties interested in the soundness of the process, even if they are not
directly involved in the enactment (e.g., auditors). Conversely, in multi-party business
processes, information about the obligations involving the parties can be produced and
observed with smart contracts. For example, by turning the process model in Fig. 1 into
a smart contract, M , S and C agree on how the process should be carried out. As the
constraints become public, none of them can complain that they expected the process to
be executed differently.

If, on the one hand, such a transparency offered by smart contracts increases the trust
in the process execution, on the other hand, it requires smart contracts to be properly
designed in order to expose only the information that should be made available to
external actors. Moreover, the ability for a smart contract to verify possible deviations
in the process enactment is strictly related to the monitoring data that are available
through the oracles. As a consequence, the availability of proper data sources that can be
accessed by the smart contract is fundamental. With single-party business processes, this
issue is not so critical as the party is responsible for designing the smart contract as well
as for designing the oracles and choosing the data sources. Conversely, when talking
about multi-party business processes, an agreement among parties must include also the
possibility to make available some of the data about the process and artifact status to
other parties. This opens an additional issue about the accessibility of those data. For
instance, to determine if the process portion carried out by S is correctly performed, S
must expose the information on the position and speed of its trucks.

In a blockchain, the transactions of mined blocks are available to all participants.
Consequently, additional mechanisms must be implemented on top of the blockchain
(e.g., based on encryption) to limit the visibility of this data only to the subset of clients
that are actually allowed to see them, so as to enable trust. For example, S may agree
on sharing information on its trucks with M , but may refuse to make this information
publicly available, as competitors may exploit it (e.g., by finding areas that are not well
covered by S).

Observability. Although both the smart contracts and the invocations of its methods
are stored in the blockchain, and their execution can be performed and analyzed by any
participant, most blockchains require smart contracts to explicitly define methods to
retrieve their information. In other words, variables that are used by smart contracts

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



Business Process Monitoring on Blockchains: Potentials and Challenges 11

are accessible only by the smart contract itself, unless methods to make their contents
available are explicitly defined in the smart contracts design. As a consequence, before
putting in place a blockchain-based monitoring platform, care should be taken defining
which information can be retrieved from the smart contract. For example, suppose that,
to monitor the process in Fig. 1, a smart contract is implemented that has an internal
representation of the process and of the status of each activity. That smart contract may
expose a function to check whether the process conforms to the model or not, without
providing information on the activities. As a consequence, although the smart contract
internally knows that, e.g., Ship container is running and Attach container to truck is
complete, it would lack a way to communicate this information to other smart contracts
or other participants, which cannot rely on it to determine the status of the process and
its activities.

To mitigate this issue, one could “debug” a smart contract by tracing the execution of
each transaction since when the deployment took place, thus identifying the variables and
how they change over time, similarly to the approach of Duchmann and Koschmider [5].
However, if the discovered information is required by another smart contract, this
information should be provided off-chain even though it originated on-chain, with
consequent trust issues and the need, once again, to rely on an oracle.

Lack of reactivity. A smart contract lacks the capability of independently making calls
or invocations to endpoints outside the blockchain upon the verification of certain
conditions. This is a limitation for business process monitoring, as in case of deviations,
the process owner or the parties involved in the process wish they were informed in
order to properly react. For example, if the smart contract monitoring the process in
Fig. 1 detects that activity Inspect container was performed while the container was
being shipped, it cannot autonomously contact S off-chain to request a justification for
that action.

To solve this issue, a smart contract has to be designed so as to either expose
public methods that can be periodically called by the interested parties to check if
some deviations occurred, or emit events and require parties to constantly monitor the
blockchain in order to catch them as soon as they fire. In both cases, e.g., it is S’s duty to
constantly check for events notifying an anomaly in its own process and promptly react
to them.

4.2 Challenges about oracles

Time management. Among the several aspects that are interesting to monitor about
a business process, one of the most pivotal is checking if an activity, or a group of
them, is performed on time. Nevertheless, implementing a smart contract able to verify
this condition could be cumbersome as a blockchain lacks a notion of time aside from
the coarse-grained block time [14]. More in detail, although a blockchain sorts the
transactions, it cannot deal with timers. This is due to the fact that the expiration of a
timer, or more simply a clock-ticking event, would be an action that originates from
the smart contract itself. However, as a smart contract can only perform actions that are
externally invoked, such actions cannot be performed without the help of an external
entity. For example, suppose that a smart contract is adopted to check whether activity

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



12 C. Di Ciccio, G. Meroni, P. Plebani

Ship container is executed on time. That smart contract cannot determine that activity
Ship container took longer than 24 hours until it receives a notification that the activity
was completed, unless it is actively polled by an external entity.

For this reason, time must be managed externally to the blockchain by means
of specific oracles which must be configured by the smart contract to send a trigger
whenever a timeout expires. It is also important to consider that those oracles are
external to the blockchain by definition, hence outside the chain of trust managed by
the blockchain. For this reason, when designing a time oracle, the situation in which the
oracle experiences a failure or produces fake data (e.g., it goes out of sync) must be taken
into consideration. To mitigate this issue, oracles may integrate time synchronization
protocols.

Reliability. The goal of an oracle is to allow the smart contracts to acquire information
from the real world. Thus, oracles must guarantee the correctness of the data they emit.
However, this may not occur for two reasons. Firstly, the oracle may deliver data that
are intentionally wrong or – because of a man-in-the-middle attack – data are forged
before being sent to the smart contract. Secondly, the oracle may not be reliable and the
data produced could be accidentally wrong. For example, if the truck’s GPS receiver is
breached, the related oracle could send incorrect information on its location.

Both circumstances hamper the trust in the gathered data. The solution is to rely
not on a single oracle to obtain information about a phenomenon occurring in the real
world, but to have a set of oracles, possibly managed by different actors. With such a
design, the effort to cheat on the smart contract becomes significant as it requires to forge
several oracles. Moreover, the smart contract can query several oracles and – assuming
that problems may occur only on a minority of them – compare the data being sent to
determine which ones cannot be trusted. For instance, the smart contract may rely on
information coming from the truck’s GPS receiver, the truck driver’s smartphone, and
the highway tollbooths, to know the location of a truck. Although this approach could
solve the problem, having a set of oracles for the same phenomena is not always feasible
or affordable, especially when monitoring human-based activities.

A possible solution to the problem of trust is to certify the oracles. In this sense,
approaches similar to the Public Key Infrastructure (PKI) can be adopted to introduce
authentication and authorization mechanisms.

Flexibility. Adopting oracles to allow smart contracts to check the behaviour of a process
implies that all the phenomena relevant for the monitoring should be exposed through
oracles. Since the smart contract should know in advance which are the oracles providing
the needed data, this could result in a lack of flexibility. In fact, adding new oracles after
the monitoring has been designed could be useless, as there is no possibility to inform the
smart contract about their existence. For example, suppose that the monitoring platform
relied initially on manual notifications to determine when the container was filled in, and
references to that oracle were hardcoded in the platform’s smart contracts. If later on
containers are equipped with scales to automatically infer if they are full or empty, it
is not possible for the platform to rely on that information, unless smart contracts are
redesigned and deployed anew.

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



Business Process Monitoring on Blockchains: Potentials and Challenges 13

Mechanisms for enabling late binding of oracles to smart contracts are thus desirable
for a proper design. Notice that late binding would also tackle problems of reliability.
Without that mechanism in place, an oracle that is no longer available cannot be replaced.

4.3 Challenges about monitoring data management

Data quality. In addition to the problems discussed in the previous section related to
the possibility that the oracles are not able to provide reliable data, there is also the
possibility that the data provider used by the oracle itself is not trustworthy. For instance,
in the case of a manual activity, it might happen that the oracle is not connected to any
sensor, as it is not possible to automatically get the information, but the change in the
status of the activity is personally done by the operator. Consequently, the operator could
cheat the system declaring, for instance, that an activity is concluded even though it is
not the case. Although this is a well-known problem in business process monitoring, we
are confident that also the adoption of blockchains may not be beneficial to solve it.

Furthermore, if erroneous data are stored in the blockchain, they can be amended
only by appending the correct information, as the blockchain does not allow for the
alteration of data in a mined block. Therefore, effective mechanisms to assess the quality
of monitoring data during the consensus phase are key [3].

Data size. In a blockchain, the larger the amount of stored data is, the more expensive the
transaction gets. This simple rule has a significant impact on monitoring costs. Indeed,
in the initial approaches [14,8], all the data that could be useful for monitoring were
supposed to be stored on-chain. Nevertheless, to reduce these costs, care should be taken
in the design of the smart contract to minimize the amount of on-chain information to
the sole data that are required to perform monitoring [8]. To this aim, distributed file
systems such as IPFS4 can be adopted to store the entire monitoring data set. Then, the
transaction only includes a link to externally stored data, and a hash value computed to
guarantee immutability. However, as smart contracts cannot natively retrieve and process
off-chain data, this could imply that oracle-mediated operations are required again.

Side effects. Most blockchains are prone to soft forks, i.e., branches in the chain of blocks
caused by two or more blocks pointing to the same predecessor. To solve ambiguities,
blockchain clients consider as valid the longest chain, that is, the one having the highest
number of subsequent blocks originating from the point of forking. From a monitoring
standpoint, this lack of information consistency is an issue, since valid monitoring data
may not be considered as the block containing them happen to lie on a discarded post-fork
branch.

Aside from soft forks, public blockchains such as Ethereum are also prone to so-
called hard forks. In case a change in the consensus protocol is made – for either
technical or political reasons – some participants may not accept it. Unlike soft forks,
hard forks cause a split in the blockchain network, which hampers interoperability. From
the monitoring standpoint, hard forks may break the platform if some participants decide
not to migrate to the new protocol.

4 Interplanetary File System (IPFS), https://ipfs.io

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3

https://ipfs.io


14 C. Di Ciccio, G. Meroni, P. Plebani

5 Conclusion

Throughout this paper, we have discussed the advantages and challenges that come along
the interplay between blockchain data and process analysis for monitoring. Despite
the growing interest in the adoption of blockchain technologies for process execution
environments, research in that direction is still at its early stages. Considering a reference
architecture for the realisation of blockchain-based process monitoring, we have focused
on the role that smart contracts, oracles and data management strategies play, in pursuit
of a fruitful discussion in the community that drives the adoption of blockchain in process
monitoring.

Acknowledgements. The work of Claudio Di Ciccio was partly supported by the MIUR
under grant “Dipartimenti di eccellenza 2018-2022” of the Department of Computer
Science at Sapienza University of Rome.

References

1. van der Aalst, W.M.P.: Business process management: A comprehensive survey. ISRN Soft-
ware Engineering 2013(507984), 37 (2013)

2. Beyer, J., Kuhn, P., Hewelt, M., Mandal, S., Weske, M.: Unicorn meets chimera: Integrating
external events into case management. In: Proc. of the BPM Demo Track. pp. 67–72 (2016)

3. Cappiello, C., Comuzzi, M., Daniel, F., Meroni, G.: Data quality control in blockchain
applications. In: BPM (Blockchain and CEE Forum). pp. 166–181 (2019)

4. Di Ciccio, C., Cecconi, A., Dumas, M., Garcı́a-Bañuelos, L., López-Pintado, O., Lu, Q.,
Mendling, J., Ponomarev, A., Binh Tran, A., Weber, I.: Blockchain support for collaborative
business processes. Informatik Spektrum 42, 182–190 (May 2019)

5. Duchmann, F., Koschmider, A.: Validation of smart contracts using process mining. In: ZEUS.
pp. 13–16 (2019)

6. Filtz, E., Polleres, A., Karl, R., Haslhofer, B.: Evolution of the bitcoin address graph. In:
Haber, P., Lampoltshammer, T., Mayr, M. (eds.) Data Science – Analytics and Applications.
pp. 77–82. Springer (2017)

7. Haslhofer, B., Karl, R., Filtz, E.: O bitcoin where art thou? insight into large-scale transaction
graphs. In: SEMANTiCS (Posters, Demos) (2016)

8. Klinkmüller, C., Ponomarev, A., Tran, A.B., Weber, I., van der Aalst, W.: Mining blockchain
processes: Extracting process mining data from blockchain applications. In: BPM (Blockchain
and CEE Forum). pp. 71–86 (2019)

9. López-Pintado, O., Garcı́a-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.: Caterpillar: A
business process execution engine on the ethereum blockchain. Softw., Pract. Exper. 49(7),
1162–1193 (2019)

10. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Compliance
monitoring in business processes: Functionalities, application, and tool-support. Information
Systems 54, 209–234 (2015)

11. Madsen, M.F., Gaub, M., Høgnason, T., Kirkbro, M.E., Slaats, T., Debois, S.: Collaboration
among adversaries: Distributed workflow execution on a blockchain. In: FAB. pp. 8–15 (2018)

12. Mendling, J., Weber, I., Aalst, W.V.D., Vom Brocke, J., Cabanillas, C., Daniel, F., et al.:
Blockchains for business process management - challenges and opportunities. ACM Trans.
Manage. Inf. Syst. 9(1), 4:1–4:16 (Feb 2018)

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3



Business Process Monitoring on Blockchains: Potentials and Challenges 15

13. Meroni, G., Baresi, L., Montali, M., Plebani, P.: Multi-party business process compliance
monitoring through iot-enabled artifacts. Inf. Sys. 73, 61 – 78 (2018)

14. Mühlberger, R., Bachhofner, S., Di Ciccio, C., Garcı́a-Bañuelos, L., López-Pintado, O.:
Extracting event logs for process mining from data stored on the blockchain. In: BPM
Workshops. pp. 690–703 (2019)

15. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), https://bitcoin.
org/bitcoin.pdf

16. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification for business processes
utilizing the bitcoin blockchain. FGCS (2017)

17. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems - Chal-
lenges, Methods, Technologies. Springer (2012)

18. Szabo, N.: Formalizing and securing relationships on public networks. First Mon-
day 2(9) (1997), https://firstmonday.org/ojs/index.php/fm/article/
view/548

19. Tran, A.B., Lu, Q., Weber, I.: Lorikeet: A model-driven engineering tool for blockchain-based
business process execution and asset management. In: BPM Demos. pp. 56–60 (2018)

20. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted
business process monitoring and execution using blockchain. In: BPM. pp. 329–347 (2016)

21. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (2018), https:
//ethereum.github.io/yellowpaper/paper.pdf

22. Xu, X., Weber, I., Staples, M.: Architecture for Blockchain Applications. Springer (2019)

Pre-print copy of the manuscript published by Springer
(available at link.springer.com)

identified by doi: 10.1007/978-3-030-49418-6_3

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://firstmonday.org/ojs/index.php/fm/article/view/548
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf


This document is a pre-print copy of the manuscript
(Di Ciccio, Meroni, and Plebani 2020)

published by Springer
(available at link.springer.com).

The final version of the paper is identified by doi: 10.1007/978-3-030-49418-6_3

References

Di Ciccio, Claudio, Giovanni Meroni, and Pierluigi Plebani (2020). “Business Process Monitoring
on Blockchains: Potentials and Challenges”. In: BPMDS. Ed. by Selmin Nurcan, Iris Reinhartz-
Berger, Pnina Soffer, and Jelena Zdravkovic. Vol. 387. Lecture Notes in Business Information
Processing. Springer, pp. 36–51. isbn: 978-3-030-49417-9. doi: 10.1007/978-3-030-49418-6_3.

BibTeX
@InProceedings{ DiCiccio.etal/BPMDS2020:BusinessProcessMonitoringonBlockchains,

author = {Di Ciccio, Claudio and Meroni, Giovanni and Plebani,
Pierluigi},

title = {Business Process Monitoring on Blockchains: Potentials and
Challenges},

booktitle = {BPMDS},
year = {2020},
pages = {36--51},
crossref = {BPMDS2020},
doi = {10.1007/978-3-030-49418-6_3},
keywords = {Blockchain; Business process monitoring; Business Process

Management}
}
@Proceedings{ BPMDS2020,

title = {Enterprise, Business-Process and Information Systems
Modeling - 21st International Conference, {BPMDS} 2020,
25th International Conference, {EMMSAD} 2020, Held at CAiSE
2020, Grenoble, France, June 8-9, 2020, Proceedings},

year = {2020},
editor = {Selmin Nurcan and Iris Reinhartz{-}Berger and Pnina Soffer

and Jelena Zdravkovic},
volume = {387},
series = {Lecture Notes in Business Information Processing},
publisher = {Springer},
isbn = {978-3-030-49417-9}

}

http://link.springer.com/
https://doi.org/10.1007/978-3-030-49418-6_3
https://doi.org/10.1007/978-3-030-49418-6_3

	Business Process Monitoring on Blockchains:Potentials and Challenges
	Introduction
	Business process monitoring
	Why to monitor.
	How to monitor.
	What to monitor.


	Monitoring with the blockchain: State of the art
	Elements of blockchains
	Current approaches

	Monitoring with Blockchain: challenges and opportunities
	Challenges about smart contracts
	Challenges about oracles
	Challenges about monitoring data management

	Conclusion
	Acknowledgements.



